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Abstract

An analysis is made to determine the optimal distribution of ‘windows’ in the wall of a long tunnel-
entrance hood used to suppress the micro-pressure wave produced when the compression wave generated
by an entering high-speed train reaches the far end of the tunnel. An ideally designed hood causes the
pressure to rise linearly across a compression wavefront of thickness equal approximately to the ratio of the
hood length to the train Mach number. At moderate train Mach numbers the hood length can be assumed
to be ‘acoustically compact’, and the initial form of the compression wave can then be expressed in terms of
an equivalent source distribution representing the train and the compact Green’s function for sources in the
hood. The requirement that the wavefront profile be linear imposes certain conditions on the Green’s
function that permits the determination of the hood window dimensions. Our calculations take no account
of the influence on compression wave formation of separated air flow over the train, from the hood portal
and from the peripheries of the windows. The explicit predictions of the optimum window sizes given in this
paper may therefore be too small, and should be refined by using model scale tests that allow window
dimensions to be varied from their predicted optimal values to incorporate the effects of flow separation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The compression wave generated when a train enters a tunnel propagates into the tunnel at the
speed of sound, ahead of the train. The pressure rise Dp across the wavefront is equal to a fraction
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A0
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1þ
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of the atmospheric pressure p0; where g ðB1:4Þ is the ratio of specific heats of air, M is the train
Mach number, andA0=A is the ‘blockage’,A0; A being, respectively, the cross-sectional areas
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of the train and tunnel [1–6]. Dp can be as large as 2% or 3% of p0 when the train speed U exceeds
about 250 kph; and for a uniform tunnel of equivalent semi-circular radius R the pressure rise
occurs across a wavefront of thickness BR=M:
The acoustic pulse radiated from the distant tunnel exit when the compression wave arrives is

called the micro-pressure wave. The amplitude of this wave is proportional to the steepness of the
compression wavefront when it reaches the exit. Acoustic non-linearity in a long tunnel tends to
reduce the wavefront thickness, causing a significant increase in wave steepness, particularly in
modern tunnels with ‘maintenance-free’ (and acoustically ‘smooth’) concrete slab tracks. The
amplitude of the micro-pressure wave can then be large enough to produce vibrations and ‘rattles’
in buildings near the tunnel exit.
The most common micro-pressure wave countermeasure is the tunnel entrance ‘hood’. This

consists of a thin-walled extension ahead of the tunnel entrance, whose purpose is to greatly
increase the initial ‘rise time’ of the compression wave: this is achieved by permitting the high-
pressure air in front of an entering train to escape through ‘windows’ distributed along the hood
walls [6–8]. The effect of the increased wavefront thickness is to inhibit non-linear steepening and
greatly reduce the amplitude of the micro-pressure wave. The compression wavefront generated
when a train enters an optimally designed hood of length ch will have an initial thicknessBch=M

across which the pressure will rise linearly with distance. The window size and spacing for hoods
currently in use for conventional high-speed trains ðMp0:25Þ are determined from model scale
tests. This is feasible largely because the hoods are relatively short (typically chB3R) and the time
required for a trial and error investigation is not excessive. ButMB0:4 for newer ‘Maglev’ trains,
and effective suppression of the micro-pressure wave will then require the hood to have a greatly
increased length, chB10R [9]. In these circumstances an ad hoc experimental determination of the
optimal window spacing and sizes becomes impracticable.
In this paper an approximate theory is developed for predicting the optimal characteristics of a

long hood. Under optimal conditions the initial compression wave thicknessBch=M is over twice
the hood length ch; and our theory is therefore based on the assumption that ch can be regarded as
acoustically compact. This is strictly a low Mach number approximation, but it is known to yield
excellent predictions for a flared hood (with no windows) with ch ¼ 10R for M ¼ 0:25 [10]. It is
derived by extension of the procedure described in Refs. [10,11], which requires a preliminary
calculation of the compact Green’s function [12] describing the pressure wave radiated into the
tunnel from a point source in the vicinity of the hood. The method is a simplified version of the
continuum approximation to the distribution of the windows discussed by the author in
Refs. [13,14]. On this basis we shall be able to make an approximate prediction of the optimum
window sizes when the distribution of window centroids along the hood is prescribed. The
prediction will be approximate because vortex ‘sources’ in the air flow from the windows pro-
duced by the passing train are ignored. Those windows far from the hood entrance are relatively
small, and are likely to be strongly influenced by separation at the edges, which tends to reduce the
effective window ‘open area’. Thus, we can expect that our predictions will provide a close
approximation to the optimal window dimensions, but that it will be necessary to refine these
values by performing experiments that permit small adjustments to the predicted window sizes.
The general formulae describing compression wave formation are reviewed in Section 2; the

compact Green’s function is discussed in Section 3 for a circular cylindrical hood with an arbitrary
prescribed distribution of windows. Typical predictions are discussed in Section 4. Explicit
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formulae are presented for a tunnel and hood of the same circular cylindrical cross-section, of the
type used in model scale experimental studies [3,5–7,10], but the method is easily modified to deal
with more general geometries.

2. Compression wave generated in a compact hood

Consider a circular cylindrical tunnel of radius R and cross-sectional areaA ¼ pR2 fitted with a
cylindrical hood of the same cross-section having N windows distributed along the hood parallel
to the tunnel axis (Fig. 1). Take co-ordinate axes x ¼ ðx; y; zÞ with the origin O on the cylinder axis
in the entrance plane of the hood, with the x-axis coaxial with the cylinder and directed out of the
tunnel. To fix ideas let the centroid of the nth window be at x ¼ xn; y ¼ 0; z ¼ R ð1pnpNÞ;
�ch ¼ xNoxN�1o?ox1o0; where ch will be referred to as the length of the hood. The window
at xn may be regarded as curvilinear rectangular with length cx parallel to the cylinder axis and
azimuthal length cy:
In the simplest such experimental arrangement, an axisymmetric ‘train’ of maximum radius h is

projected at high speed into the tunnel from x > 0; guided by a steel wire tightly stretched along
the tunnel axis and threaded through a smooth cylindrical channel bored along the axis of the
train. Our discussion will be confined to this case, but our formulae will be applicable also to cases
where the train axis is displaced from the tunnel axis. The compression wave is generated as the
front of the train passes through the hood. To calculate the initial wavefront profile it may be
assumed that the tunnel extends to x ¼ �N; and that the overall length of the train is very much
larger than the ‘nose length’ L shown in the figure, beyond which the circular cross-sectional area
of the train assumes the constant value A0 ¼ ph2:
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Fig. 1. (a) Schematic of the circular cylindrical tunnel of radius R fitted with a hood of length ch when there are N ¼ 4
rectangular windows. The geometric centre of the nth window is at x ¼ xn; y ¼ 0; z ¼ R: (b) Characteristic dimensions
of an axisymmetric train entering the hood at speed U along the centreline of the tunnel.
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The initial pressure rise across the compression wavefront depends on train Mach number and
the tunnel blockage. The moving train can be replaced by a uniformly convecting set of monopole
and dipole sources that represent the displacement of air by the train and the pressure drag over
the nose. The progressive interaction of these distributed sources with the hood portal and
windows determine the details of the wavefront profile [5–8,11,12]. Measurements show that, to
the rear of the wavefront, the pressure continues to rise slowly with distance from the wavefront.
This is usually attributed to aerodynamic sources, i.e., to vorticity in the boundary layers on the
train and tunnel walls and in the exit flows from the portal and windows, whose influence on the
initial wavefront profile is of secondary importance, and may therefore be ignored in the present
discussion.
It is shown in Ref. [11], that when the train enters the tunnel from x > 0 along the tunnel-axis at

constant speed U ; and the blockageA0=Ap0:2 (the case in most applications), the aerodynamic
monopole and dipole distributions on the train can be replaced by the following ‘slender body
approximation’

U

ð1� M2Þ
1þ

A0

A

� �
@

@t

@AT

@x
ðx þ UtÞdðyÞdðzÞ

� �
; ð1Þ

where AT ðsÞ denotes the cross-sectional area of the train at distance s from the front of the nose,
which is assumed to cross the entrance plane ðx ¼ 0Þ of the hood at time t ¼ 0: The monopole and
dipole sources are therefore non-zero only in the vicinity of the train nose where the train cross-
section is changing. A corresponding source distribution at the tail of a long train can be ignored
when calculating compression wave formation.
The linear acoustic pressure field generated in the tunnel by this source represents the

compression wave produced by the train prior to the onset of non-linear steepening. The
wavefront properties are determined by the interaction of the nearfield of the moving source with
the hood portal and windows as the front of the train travels the length ch of the hood. The hood
is acoustically compact when the wavefront thickness is much greater than ch: Then the
compression wave propagates one dimensionally at the speed of sound c0; say, with pressure
p ¼ pðx; tÞ; which is calculated by convolution of source (1) with the compact Green’s function for
the hood. When the observation point x lies within the tunnel ahead of the train the Green’s
function is given by [10–12]

Gðx; x0; t � tÞE
c0

2A
H t � t�

jj�ðxÞ � j�ðx0Þj
c0

� �
�H t � tþ

j�ðxÞ þ j�ðx0Þ
c0

� �� �
; ð2Þ

where H is the unit step function, and j�ðxÞ is the velocity potential of a hypothetical
incompressible flow out of the tunnel portal (from x ¼ �N); j�ðxÞBOð

ffiffiffiffiffi
A

p
Þ in the vicinity of the

portal, and is normalized such that

j�ðxÞEx � c0 as x-�N inside the tunnel

E �A=4pjxj as jxj-N outside the tunnel: ð3Þ

This approximation is applicable for any tunnel whose interior cross-sectional area is ultimately
constant and equal toA: The length c0 is an ‘end-correction’ [12,15] whose value depends on the
shape of the hood portal and the distribution of the windows. The function j�ðxÞ satisfies
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Laplace’s equation r2j� ¼ 0 and represents an ideal flow from the tunnel that has vanishing
circulation about all irreducible closed contours (such as one threading two windows).
The convolution supplies the following formula for the compression wave pressure:

pE
r0U

2

Að1� M2Þ
1þ

A0

A

� �Z
N

�N

@AT

@x0 ðx0 þ U ½t
Þ
@j�

@x0 ðx
0; 0; 0Þ dx0;

x

ch

-�N; ð4Þ

where r0 is the mean air density and ½t
 ¼ t þ ðx � c0Þ=c0 is the effective retarded time.
When the potential function j�ðxÞ is determined numerically it is actually more convenient to

calculate first the compression wave ‘pressure gradient’ @p=@t: By differentiating Eq. (4) and
integrating by parts we find for this purpose

@p

@t
E

�r0U
3

Að1� M2Þ
1þ

A0

A

� �Z
N

�N

@AT

@x0 ðx0 þ U ½t
Þ
@2j�

@x02 ðx0; 0; 0Þ dx0;
x

ch

-�N: ð5Þ

The pressure p is subsequently determined by evaluation of

p ¼
Z t

�N

@p

@t0
dt0: ð6Þ

3. Optimally distributed hood windows

3.1. Step function approximation

The optimal characteristics of the hood, necessary to produce a linear rise in pressure over a
compression wavefront of thickness ch=M; are derived in the first instance by considering a train
with a ‘snub-nose’, whose nose length L-0: Then

@AT

@x
ðx þ UtÞ-A0dðx þ UtÞ; ð7Þ

and Eq. (2) reduces to

pE
r0U

2

ð1� M2Þ
A0

A
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A0

A

� �
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@x0 ð�U ½t
; 0; 0Þ;
x

ch

-�N; ð8Þ

and the pressure gradient becomes

@p

@t
�

�r0U
3

ð1� M2Þ
A0

A
1þ

A0

A

� �
@2j�

@x02 ð�U ½t
; 0; 0Þ;
x

ch

-�N: ð9Þ

In Eq. (8) it is evident from properties (3) that @j�=@x0 increases from 0 to 1 as the retarded
time increases from a value marginally less than zero to U ½t
 > ch: The hood will therefore behave
optimally provided

@j�

@x
ðx; 0; 0Þ decreases linearly over � choxo0:
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Such a variation is described by the straight line

@j�

@x
¼ v0 � ð1� v0Þ

x

ch

; � choxo0; ð10Þ

plotted in Fig. 2, along which @j�=@x decreases from 1 at x ¼ �ch to v0 at the entrance
x ¼ x0 � 0 of the hood.
This ideal cannot be realized by a hood having a distribution of discrete windows. If the details

of the behaviours of @j�=@x near each of the windows are temporarily ignored, the best that can
be obtained is a step-like variation of the kind also illustrated in the figure, where @j�=@x changes
discontinuously at each window. For this simple model, according to which the gross features of
j�ðxÞ in the hood are assumed to depend on x alone, we can set

j� ¼ an þ v0 �
ð1� v0Þxn

ch

� �
x for xnþ1oxoxn; n ¼ 0;y;N; ð11Þ

where an ðn ¼ 0; 1;y;NÞ are constant coefficients, and where we define xNþ1 ¼ �N: Then

vn ¼ v0 �
ð1� v0Þxn

ch

ð12Þ

is the constant value of @j�=@x in the interval xnþ1oxoxn between the windows at x ¼ xnþ1 and
xn: Therefore, the volume flux qn; say, through the nth window is just equal to Aðvn � vn�1Þ; or

qn ¼
Að1� v0Þ

ch

ðxn�1 � xnÞ; n ¼ 1; 2;y;N: ð13Þ

The continuity of j� at x ¼ xn requires that the constants an satisfy

an þ v0 �
ð1� v0Þxn

ch

� �
xn ¼ an�1 þ v0 �

ð1� v0Þxn�1

ch

� �
xn; n ¼ 1;y;N; ð14Þ
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Fig. 2. For an ideal hood,

@j�

@x
¼ v0 � ð1� v0Þ

x

ch

; � choxo0;

represented by the straight line envelope of the step function approximation produced by windows distributed at

x ¼ xn; 1pnpN:
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which implies that

an ¼ a0 þ
ð1� v0Þ

ch

Xn

k¼0

xkðxk � xk�1Þ; n ¼ 0;y;N ðtaking x�1 ¼ 0Þ: ð15Þ

Collecting together these results, the step function approximation becomes

j� ¼ a0 þ
ð1� v0Þ

ch

Xn

k¼0

xkðxk � xk�1Þ þ v0 �
ð1� v0Þxn

ch

� �
x; xnþ1oxoxn; n ¼ 0;y;N:

ð16Þ

3.2. Condition at the hood entrance plane

Formula (16) contains two undefined parameters a0 and v0 which are related by conditions to
be satisfied at the entrance plane x ¼ x0 � 0 of the hood. To obtain this relation we shall assume
that the windows are sufficiently small that the flow at speed v0 from the hood portal can be
approximated locally by the velocity potential for uniform flow from an unflanged circular
cylinder. In particular, the first window must therefore be situated at least one or two radii R from
the entrance. Then

j� ¼ v0jEðxÞ; x > �R; ð17Þ

where

jEðxÞBx � c0E as
x

R
-�N inside the hood

B
�A

4pjxj
for jxjcR outside the hood; ð18Þ

c0EE0:61R is the end-correction of the hood mouth [16]. It now follows from a comparison of
Eqs. (16) and (17) that

a0 ¼ �v0c
0
E : ð19Þ

3.3. Regularized approximation for j�

In order to use these results to obtain a continuous representation of the compression wave
pressure distribution (8) it is necessary to modify the step function approximation of @j�=@x in
the neighbourhoods of the windows. Now @j�=@x varies significantly only in the immediate
neighbourhood of a window, and assumes the constant value vn between the ðn þ 1Þth and nth
windows, so that it is actually more convenient to express our formulae in terms of @2j�=@x2 (as
in Eq. (9)), which vanishes except near the windows and at the hood portal. To do this we shall
assume that on the hood axis the influence of the potential flux qn from the nth window can be
approximated by the incompressible velocity potential

qn

A
jnðxÞ;

say, produced by a point sink of strength qn at the centroid ðxn; 0;RÞ of the window.
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Introduce cylindrical polar co-ordinates ðr; y;xÞ defined such that ðz; yÞ ¼ rðcos y; sin yÞ: Then
routine calculation [16] yields the formula

R
@2jn

@x2
ðr; y; xÞ ¼

�1
p

XN
m¼0

Z
N

0

sm cosðmyÞl
Imþ1ðlÞ þ Im�1ðlÞ

Im
lr

R

� �
cos

lðx � xnÞ
R

� �
dl; roR; ð20Þ

where In is a modified Bessel function [17], and s0 ¼ 1; sm ¼ 2 ðmX1Þ:
A similar integral expression can be derived [11] for the velocity potential jEðxÞ of Eq. (17)

describing flow from the hood portal, from which we find

R
@2jE

@x2
ðr; y;xÞ ¼ �

1

2p

Z
N

0

lI0
lr

R

� �
2K1ðlÞ
I1ðlÞ

� �1=2
cos l

x

R
þZðlÞ

	 
n o
dl; roR;

ZðlÞ ¼
1

p

Z
N

0

ln
K1ðmÞI1ðmÞ
K1ðlÞI1ðlÞ

� �
dm

m2 � l2
; ð21Þ

where K1 is a modified Bessel function [17].
Hence (taking account of Eq. (17)) the composite representation of @2j�=@x2 for use in Eq. (9)

becomes

@2j�

@x2
ðr; y; xÞ ¼

XN

n¼1

qn

A

@2jn

@x2
ðr; y;xÞ þ v0

@2jE

@x2
ðr; y; xÞ; roR: ð22Þ

This is non-zero only within the hood in the vicinities of the windows, and at the hood portal. The
monopole strengths qn are given in terms of v0 and the window co-ordinates by Eq. (13); the
coefficient v0 remains to be specified.

3.4. Window dimensions

The size of the nth window is estimated by making use of the formula

Kn ¼
qn

�j�ðxnÞ
; ð23Þ

where Kn is the Rayleigh conductivity of the window [12,15] expressed as the ratio of the volume
flux qn through the window and the total potential rise �j�ðxnÞ in the flow direction. Here it is
implicitly assumed that the mean value of the potential in the free space region outside the hood in
the vicinity of the nth window is negligible, in other words, the collective effect of all of the other
windows on the exterior potential at the nth window is ignored [13,14].
According to Rayleigh [15], when the area An of the nth window is much smaller than the

cross-section A of the hood and when the hood wall has thickness cw;

1

Kn

¼
1

K 0
n

þ
cw

An

;

where K 0
nE2ðAn=pÞ

1=2 is the conductivity when the wall has zero thickness, i.e.,

1

Kn

E
ffiffiffiffiffiffiffiffiffiffi
p
4An

r
þ

cw

An

: ð24Þ
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By solving this equation for An and making use of formulae (13) and (16) to evaluate Kn from
Eq. (23), we therefore obtain

AnE
pK2

n

16
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

16cw

pKn

s !2
;

Kn ¼
Aðxn�1 � xnÞPn

k¼1 xk�1ðxk � xk�1Þ � v0chðxn � c0EÞ=ð1� v0Þ
: ð25Þ

3.5. Evenly spaced windows

Numerical results are given in Section 4 for the important case in which the windows are evenly
spaced along the hood. The step function approximation (16) then assumes the form

j� ¼ �v0c
0
E þ

nðn þ 1Þð1� v0Þch

2N2
þ v0 þ

nð1� v0Þ
N

� �
x; xnþ1oxoxn; ð26Þ

where xn ¼ �nch=N; 0pnpN; xNþ1 ¼ �N: Within the tunnel ðxoxN ¼ �chÞ j� ¼ x � c0;
where the end correction

c0 ¼ v0c
0
E �

ðN þ 1Þð1� v0Þ
2N

ch: ð27Þ

The following simplified forms of other formulae given above will also be needed:

qn ¼
Að1� v0Þ

N
;

Kn ¼
2NA

nðn � 1Þch þ 2Nv0ðnch þ Nc0EÞ=ð1� v0Þ
;

n ¼ 1;y;N; ð28Þ

@2j�

@x2
ðr; y;xÞ ¼

ð1� v0Þ
N

XN

n¼1

@2jn

@x2
ðr; y; xÞ þ v0

@2jE

@x2
ðr; y;xÞ; roR: ð29Þ

4. Numerical results for evenly spaced windows

4.1. The optimal value of v0

As x increases from �ch to 0 within an optimally designed hood @j�=@x decreases linearly from
1 to v0: This ideal cannot be attained in a hood with a finite number of windows, but can be closely
approximated by choosing the value of v0 so that the mean value of R@2j�=@x2 is approximately
constant. In general, it must be expected that the appropriate value of v0 will also depend on the
position of the train track inside the tunnel. We shall confine attention to the experimental case
where the train travels along the tunnel axis ðr ¼ 0Þ:
For each n and fixed values of r and y; it is evident from Eq. (20) that R@2jn=@x2 is an even

function of x � xn; it exhibits a single maximum negative peak value at x ¼ xn: On the tunnel axis
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this maximum value is approximately equal to �0:89: When the windows are evenly spaced the
series on the right of Eq. (29) therefore defines a function of x that varies periodically from
window to window within the hood, assuming equal negative maxima of �0:89ð1� v0Þ=NR at
each window, and tending rapidly to zero near the hood portal at x ¼ 0: The final term
v0@2jE=@x2 on the right of Eq. (29) is negative and non-zero only near x ¼ 0; where it
attains a negative maximum value of �0:64v0=R: We can ensure that the average negative
value of @2j�=@x2 is approximately constant within the hood and in the immediate
neighbourhood of the hood portal by requiring all of the peak negative values to be equal,
which is the case when

v0 ¼
1

1þ 0:72N
: ð30Þ

The optimal character of this choice on the hood axis is shown in Fig. 3 for N ¼ 5 for a hood of
length ch ¼ 10R: The solid-line curves in the figure illustrate how v0 ¼ 0:218 determined by
Eq. (30) supplies the smoothest variation of @j�=@x at the hood portal, and equal negative peak
values for R@2j�=@x2 at the windows and at the portal.
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Fig. 3. Calculated variations of (a) @j�=@x and (b) R@2j�=@x2 on the hood axis ðr ¼ 0Þ for v0 ¼ 0:05; 0:218; 0:4 in the
case of N ¼ 5 evenly spaced windows in a hood of length ch ¼ 10R: The solid curves are optimal, when v0 is determined

by Eq. (30) and the negative peak values of R@2j�=@x2 are equal.
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4.2. Train with ellipsoidal nose profile

Consider a train with an ellipsoidal nose profile obtained by rotating the curve y ¼
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=LÞð2� x=LÞ

p
; 0oxoL about the x-axis, so that, when s denotes distance measured from

the front of the train (and the tail of the train is at s ¼ N),

AT ðsÞ
A0

¼

s

L
2�

s

L

	 

; 0osoL;

1; s > L:

8<
: ð31Þ

This formula has been used to evaluate the compression wave pressure gradient @p=@t from Eq. (5)
for a train entering along the axis of symmetry of a hood of length ch ¼ 10R with evenly spaced
and optimally sized windows; @2j�=@x2 is calculated from Eq. (29) when r ¼ 0 and v0 is given by
Eq. (30). The compression wave pressure profile is then determined from Eq. (6).
Numerical results are given for

A0

A
¼ 0:2;

h

L
¼
1

3
: ð32Þ

Fig. 4 depicts the calculated variations of

p
r0U

2

ð1� M2Þ
A0

A
1þ

A0

A

� �
;

@p

@t

� �
r0U

3

Rð1� M2Þ
A0

A
1þ

A0

A

� �
ð33Þ

plotted as functions of U ½t
=R for N ¼ 5 windows (where ½t
 ¼ t þ ðx � c0Þ=c0; c0E� 4:6R). The
pressure gradient exhibits six equal maxima, that near U ½t
=R ¼ 0 being the contribution from
@2j�E=@x2 produced as the nose enters the hood. These maxima in @p=@t are manifested also by a
corresponding ‘rippling’ of the pressure profile p; which otherwise rises smoothly over
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Fig. 4. The normalized compression wave and pressure gradient
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produced by a train with the ellipsoidal nose (31) satisfying Eq. (32) entering an optimized hood of length ch ¼ 10R
with N ¼ 5 evenly spaced windows.
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�1oU ½t
=Ro11; so that the overall compression wave thickness B12R=Mcch: A considerable
smoothing of the pressure rise is evident in the case illustrated in Fig. 5, where the number of
windows is increased to N ¼ 7 ðc0E� 4:7RÞ:
When there are no windows (Fig. 6) the pressure rise occurs over �1oU ½t
=Ro1; and the

compression wave thicknessB2R=M: The peak pressure gradient then assumes its the maximum
possible value, which is, respectively, about 4.5 and 6.1 times larger than those in Figs. 4 and 5 for
N ¼ 5 and 7 windows.
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Fig. 5. The normalized compression wave and pressure gradient
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produced by a train with the ellipsoidal nose (31) satisfying Eq. (32) entering an optimized hood of length ch ¼ 10R
with N ¼ 7 evenly spaced windows.

Fig. 6. The normalized compression wave and pressure gradient
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4.3. The optimal window dimensions

The areas of the optimally sized windows decrease with distance from the hood portal. When
N ¼ 5 the window centroids are at x=R ¼ �2;�4;�6;�8;�10; and the area of the nth window is
calculated from the first of Eq. (25) with the conductivity Kn given by Eq. (28). For square
windows of side cn ¼

ffiffiffiffiffiffiffi
An

p
the values of c1 to c5 are listed in Table 1 for three values of the hood

wall thickness cw ¼ 0; 0:15R; 0:3R: The windows increase in size with wall thickness, and the
case cw ¼ 0:15R is probably representative of conditions in practice. However, the predicted sizes
of the smaller windows may be too small because of the assumption (implicit in our neglect of
vortex sources) that the motion in each window is irrotational. Separated flow from the window
edges produced by the entering train can generate non-negligible vortex sources that have not
been considered in optimizing the window dimensions; such sources tend to block flow through
smaller windows which would therefore need to be larger in order to behave optimally.
The tabulated values (and other values calculated from Eqs. (25) and (28) for other values of N)

are really only a guide to the actual dimensions. The latter should be determined experimentally,
using a model hood fitted with windows whose areas can be varied by means of sliding panels. The
experiment starts with the windows set to their theoretically predicted sizes, which are then
adjusted to yield optimal performance; adjustments will probably be necessary only for the
smaller windows.
A similar cautionary note is necessary when interpreting the sizes given in Table 2 for the other

case considered above of N ¼ 7 windows.

5. Conclusion

An optimally designed tunnel-entrance hood produces a linear growth in pressure across the
wavefront of the compression wave generated by a high-speed train, and a wavefront thickness
roughly equal to the ratio of the hood length to the train Mach number. For a hood of uniform
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Table 1

Square window sides for N ¼ 5

cw=R c1=R c2=R c3=R c4=R c5=R

0 0.77 0.33 0.18 0.12 0.08

0.15 0.91 0.45 0.29 0.21 0.16

0.30 1.02 0.54 0.36 0.26 0.21

Table 2

Square window sides for N ¼ 7

cw=R c1=R c2=R c3=R c4=R c5=R c6=R c7=R

0 0.98 0.45 0.25 0.16 0.11 0.08 0.06

0.15 1.13 0.58 0.37 0.26 0.20 0.16 0.14

0.30 1.25 0.67 0.44 0.33 0.26 0.21 0.18
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cross-section, with windows along its length, this ideal behaviour is achieved by distributing the
window positions and sizes in such a way that the axial velocity @j�=@x of a uniform, hypothetical
potential flow out of the tunnel and hood decreases linearly to zero over the length of the hood.
The function j� occurs in the Green’s function used to express the compression wave in terms of
an equivalent ‘source’ description of the train. It is only theoretically possible for @j�=@x to vary
linearly in the hood for a ‘continuous’ distribution of windows, but our calculations for evenly
spaced windows of variable size have shown for a hood of length ch ¼ 10R that as few as seven
windows can be expected to produce a compression wavefront pressure profile with minimal
‘rippling’ and uniformly small pressure gradient (about 17% of that in the absence of windows).
In addition to the source distribution associated with the moving train, vortex dipoles

attributable to separation of the air flow over the train, from the hood portal and from the
peripheries of the windows, also affect in a small yet significant manner the characteristics of the
pressure rise across the compression wavefront. In particular, vorticity generated in the windows
can reduce the effective window ‘conductivity’, and this is not easily quantified without recourse
to extensive numerical analysis. This means that our predictions of the optimum window sizes
necessary to produce a linear rise in pressure may be too small. Hood design should therefore be
finalized using model scale tests to refine predictions obtained by the method of this paper: the
theory is first used to predict the window dimensions in the absence of separated flow; the final
window sizes are determined from a series of tests that allow predicted optimal window
dimensions to be adjusted to take full account of flow separation.
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Appendix. Nomenclature

an coefficient in definition (11) of j�

An area of nth window
A cross-sectional area of the tunnel
A0 uniform cross-sectional area of the train
AT variable cross-sectional area of the train
c0 speed of sound
G Green’s function
h radius of uniform section of train
H Heaviside step function
Kn Rayleigh conductivity of nth window
ch length of hood
cw thickness of tunnel wall
cx axial length of a window
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cy azimuthal length of a window
c0 end correction
c0E end correction for circular duct, B0:61R
M train Mach number
N total number of windows
p pressure
qn effective source strength of nth window
U speed of train
R tunnel radius
½t
 retarded time
v0 velocity in expression for j�

xn centroid of the nth window
g ratio of specific heats
r0 mean air density
j� velocity potential in the definition of G

jE velocity potential of flow from a circular duct
jn velocity potential produced by flow from the nth window
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